
Core JEE patterns - Presentation tier design patterns

Intercep(ng	filter

Purpose

To	do	pre-processing	on	requests	or	post-processing	on	responses.

Notes

Implementa6on	available	with	JEE.

More	info

h=p://www.oracle.com/technetwork/java/intercep6ngfilter-142169.html

Front	controller
Purpose

Have	be=er	control	over	request	rou6ng.	Front	controller	could	technically	be	a	servlet	or	a
jsp.	Generally	it's	made	as	servlet.

	Without	the	Frontcontroller,	resources	(jsp)	has	to	be	directly	called	using	urls	(physical
resource	mapping).	 With	front	controller	logical	resource	mapping	is	possible.	

http://www.oracle.com/technetwork/java/interceptingfilter-142169.html


Variant	1

OSen	used	with	applica6on	controller.	Applica6on	controller	dispatches	to	view	and	invokes
command	(for	business	processing).	In	this	case,	command	object	executes	the	request.
Depending	on	the	resuly	of	command	object,	appropriate	view	is	chosen.

	Struts	uses	a	variant	of	this.	MVC2	(Pull	based	MVC).	Spring	MVC	also	follow	similar
pa=ern.	

Variant	2

Instead	of	applica6on	controller,	it	could	make	use	of	a	helper	as	well.

				

Variant	3



Suitable	for	apps	with	few	urls.	View	itself	manages	everything.	Urls	are	mapped	to	physical
resources	directly.

	

Context	object
Context	pa=ern	addresses	a	mechanism	to	encapsulate	environment	/	protocol	specific
informa6on	in	an	independent	manner.



Typical	examples	-	H=p	request	context,	configura6on	context,	security	context,	etc.

Context	object	is	oSen	using	along	with	a	content	factory	which	supplies	the	context
informa6on	based	on	the	need.

	

Different	strategies:

Request	strategy:	Encapsula6ng	HTTP	request	in	a	context	object
Configura6on	strategy:	Encapsula6ng	config	informa6on	in	a	context	object.
Security	strategy:	Encapsula6ng	security	informa6on	in	a	context	object.

Applica(on	controller
Purpose:	Ac6on	management	for	views.	It	works	with	view	management	such	as	front
controller.

	Example:	Struts	ac6on	management.

	Implementa6on	detail:	It	could	even	work	with	Command	object.



View	Helper
Purpose:	Separate	processing	logic	from	the	view	markup.

POJO	(Java	bean)	could	be	used	as	view	helper.	Custom	tags	can	be	used	as	view	helper	-
Implementa6on	as	custom	tag	or	tag	file.

Composite	View
Purpose:	Have	sub-views	of	a	page	independent	of	the	layout.

Similar	to	portlets.



Service	to	woker
This	pa=ern	puts	together	most	of	the	other	presenta6on	logic	pa=erns	for	controller	based
strategy.

Purpose

View	requires	data	from	business	services.	Data	will	be	made	available	in	the	form	of
presenta6on	model.
Controller	based	strategy	is	in	place	for	presenta6on	layer.

Dispatcher	view
This	pa=ern	put	together	other	presenta6on	tear	pa=erns	for	view	based	strategy	(request
handling	primarily	done	through	views).

Purpose

Leveraging	business	logic	to	prepare	presenta6on	model.



Works	for	view	based	strategy.

	



	



		

Presenta(on	layer	considera(ons

Session	management

Session	state	on	the	client

a. Store sessions on hidden fields.
i. Advantages

1. No worry about server sessions, hence scale out is easy.
ii. Disadvantages

1. Network round trip.
2. Security - expose data. Needs encryption.
3. Session has to be "stringified" (type limitation)

b. Store in cookies
i. Advantages

1. No server session, scale out easy.
ii. Disadvantages

1. Network round trip
2. Security - expose data. Needs encryption.
3. Size limitation with cookies.
4. Data has to be "Stringified" (type limitation).

c. Store in URLs.
i. Advantages

1. No server session.
ii. Disadvantages

1. Lengthy URLs.
2. Security issue.
3. Type limitation.

	

Session	state	on	the	server

a. Store sessions on hidden fields.
i. Advantages

1. No size limitation.
2. No type limitation.
3. No security issues.
4. No network round trip.

ii. Potential issue
1. Session sharing among machines in a cluster.



a. Solution - "Sticky" load balancers.
b. Store session in business tier as EJB bean.
c. Store session in resource tier (rdbms)
d. Most app servers support session replication using cache.

Form	Valida(ons

Must validate at client side & server side. Client side validation is not
trustable.
Use validator frameworks.

Struts & Spring has its own validation framework.
Or, use external frameworks like Apache commons Validator.

Preven(ng	duplicate	form	submission

Create a synchronizer token, put it in form & in session.
On form submission, check the validity of the form by comparing one from
session & in the form.

Controlling	client	access

1. Protect server resources through guarded configuration.
a. Define role based security constraints in web.xml

i. Form based authentication
1. Define a form to capture user id/password.

ii. Basic authentication
1. Browser will show a dialog to capture the user id /

password.
b. Put jsps in /WEB-INF

i. No client can access it.
ii. Only servlets can redirect to it.

2. Securing a section of view.

Helpers	-	Always	ini(alize	the	state	variables.



Presenta(on	layer	-	Bad	prac(ce

Control	code	in	mul(ple	views

Solution:

Use servlets as controllers.
Use java beans for accessing/storing data
Use custom tag helpers for formatting & displaying data
Let the controller servlet create beans & forward it to the view (jsp).

 

Sharing	presenta(on	(er	data	structures	such	as
HNpServletRequest	to	domain	objects	or	business	(er

Solution:

Extract the required parameters and send only the parameters.

 

Exposing	sensi(ve	resources	such	as	proper(es	file	to	direct
client	access

Solution:

Put them in /WEB-INF directory
Put them in an access controlled directory.

 

Java	backing	beans	as	view	helpers	-	Assuming	that	it	is
ini(alized	using	<jsp:set/>

Solution:

Initialize the variables of the beans in bean itself.

 

FaNy	controllers



Solution:

Use command helper java bean to delegate certain processing.f

http://www.computepatterns.com

http://www.computepatterns.com/

